La Norma IEC 62508, Ed. 1.0-2010 Risk Management – Risk Assessment Techniques Per conto di AICQ CN¹ - Autore Giovanni Mattana - Consigliere di Giunta AICQ CN –Presidente della Commissione IEC per la Fidatezza **IEC 62508** Edition 1.0 2010-06 # INTERNATIONAL STANDARD NORME INTERNATIONALE Guidance on human aspects of dependability Lignes directrices relatives aux facteurs humains dans la sûreté de fonctionnement ¹ marzo 2012 -RIPRODUZIONE VIETATA SENZA IL CONSENSO DI AICQ CENTRONORD E DELL'AUTORE ## **GUIDANCE ON HUMAN ASPECTS OF DEPENDABILITY** La Norma IEC 62508, Ed. 1.0-2010 Risk Management – Risk Assessment Techniques #### L'INDICE DEI CONTENUTI DELLA NORMA # FOREWORD INTRODUCTION - 1 Scope - 2 Normative references - 3 Terms, definitions and abbreviations - 4 Human aspects - 5 Human-oriented design in the system lifecycle - 6 Human-oriented design at each life cycle stage - 7 Human-centered design methods Annex A (informative) Examples of HRA methods. Annex B (informative) Summary of human-oriented design activities and their impact on system dependability Annex C (informative) Best practices for humancentered design. Bibliography. ### **GUIDANCE ON HUMAN ASPECTS OF DEPENDABILITY** La Norma IEC 62508, Ed. 1.0-2010 Risk Management – Risk Assessment Techniques #### 4 Human aspects #### 4.1 Overview #### 4.2 Components of the system and their interactions - 4.2.1 Introductory remark - 4.2.2 Goals - **4.2.3 Humans** - 4.2.4 Machine (interactive system) - 4.2.5 Social and physical environment - **4.2.6 Output** - 4.2.7 Feedback from the machine to the person #### 4.3 Human characteristics - 4.3.1 Introductory remark - 4.3.2 Human limitations - 4.3.3 Comparison of humans and machines ## 4.4 Human performance shaping factors - 4.4.1 External performance shaping factors - 4.4.2 Internal performance shaping factors ## 4.5 Human reliability analysis (HRA) - 4.5.1 Overview - 4.5.2 Identifying the potential for human error - 4.5.3 Analysing human failures to define countermeasures - 4.5.4 Quantification of human reliability #### 4.6 Critical systems - 4.7 Human-centred design guidelines - 4.8 Human-centred design process - 4.8.1 Human-centred design principles within the design process - 4.8.2 Human-centred design activities ## **GUIDANCE ON HUMAN ASPECTS OF DEPENDABILITY** La Norma IEC 62508, Ed. 1.0-2010 Risk Management – Risk Assessment Techniques ## 5 Human-oriented design in the system lifecycle - 5.1 Overview - 5.2 The system life cycle - 5.3 Integrating human-oriented design in systems engineering #### 6 Human-oriented design at each life cycle stage - **6.1 Overview** - 6.2 Concept/definition stage - 6.2.1 Concept - 6.2.2 Human-centred design planning - 6.2.3 Understanding needs - 6.2.4 System requirements - 6.2.5 Human-centred design requirements - 6.3 Design/development - 6.4 Realization/implementation - 6.5 Operation/maintenance - 6.6 Enhancement - 6.7 Retirement/decommission - 6.8 Outsourcing projects and related human-centred design issues ## 7 Human-centred design methods - 7.1 Classification of human-centred design activities - 7.2 Applications of human-centred design methods - **Annex A** (informative) Examples of HRA methods - Annex B (informative) Summary of human-oriented design activities and their impact on system dependability **Annex C** (informative) Best practices for human-centred design La Norma IEC 62508, Ed. 1.0-2010 Risk Management – Risk Assessment Techniques ## Components of the system and their interactions La Norma IEC 62508, Ed. 1.0-2010 Risk Management – Risk Assessment Techniques # Table 1 – People who influence dependability | Job function | Examples of influence | | |------------------------------------|--|--| | Project manager | Awareness of dependability needs in system concepts | | | Designer | Takes account of human factors in normal use and reasonably foreseeable misuse Designs for recognition and recovery from fault conditions including where there are multiple failure modes | | | Operational procedure writer | Establishes procedures that minimize human failures | | | Operational manager and supervisor | Ensures appropriate working conditions resources, communication, feedback and training Motivates operators Ensures compliance with procedures | | | Operator | Observes and reports consequences of human error | | | Trainer | Highlights error-prone situations in training | | | Maintenance personnel | Understand, interpret and ensure compliance with procedures | | La Norma IEC 62508, Ed. 1.0-2010 Risk Management – Risk Assessment Techniques # Figure 2 - Human performance shaping factors La Norma IEC 62508, Ed. 1.0-2010 Risk Management – Risk Assessment Techniques # Simple model of human information processing Figure 4 – Human-centred design activities ## **GUIDANCE ON HUMAN ASPECTS OF DEPENDABILITY** La Norma IEC 62508, Ed. 1.0-2010 Risk Management – Risk Assessment Techniques ## Figure 5 – Human aspects of the system life cycle ## System life cycle stages La Norma IEC 62508, Ed. 1.0-2010 Risk Management – Risk Assessment Techniques # **HRA** methods and their application | METHOD AND SHORT DESCRIPTION | Level of use | |---|--------------| | ASEP – Accident Sequence Evaluation Program | | | ATHEANA – A Technique For Human Error Analysis | | | CAHR – Connectionism Assessment Of Human Reliability | | | CREAM – Cognitive Reliability And Error Analysis Method | | | ESAT –expert system for task taxonomy | | | FMEA/FMECA – Failure Modes And Effects Analysis | | | HCR/ORE (Human Cognitive Reliability / Operator Reliability | | | experiments) | | | HEART/CARA – Human Error Assessment And Reduction | | | Technique | | | MERMOS – Method for the evaluation of the realization of an | | | operator's mission regarding safety | | | SHERPA – Systematic Human Error Reduction And Prediction | | | Approach | | | SLIM – Success Likelihood Index Methodology | | | SPAR-H – Standardized Plant Analysis Risk (SPAR) HRA | | | THERP – Technique for Human Error Rate Prediction | | La Norma IEC 62508, Ed. 1.0-2010 Risk Management – Risk Assessment Techniques # Summary of human-oriented design activities and their impact on system dependability #### Table B.1 – Automation | Human-centred design activity | Impact on system dependability | |--|---| | Provide automation information and operating status and other feedback to system user. Make features easy to use. Ensure safe operations within the user's capacity and capability. Alert user of automation failure or degradation, and potential unsafe modes of operation. Provide error resistant and error tolerant features that are not unnecessarily difficult to use to prevent unauthorized or accidental access. Provide means for manual override (with safequards) | Enhancing availability of system functions. Improved system performance due to automated functions. Enabling users to carry out the required tasks to avoid increased cognitive demands, extreme workload situations, interruption or distraction imposed on the user. Simplifying user training needs and requirements for system applications. Minimizing errors and risk arising from error. | ## B.3 Design for maintainability Table B.2 - Design for maintainability | Human-centred design activity | Impact on system dependability | |--|---| | Build in redundancy where practicable and cost-effective to reduce unscheduled maintenance. Design for modularity, lowest replaceable unit and throwaway assembly. Incorporate built-in-test capabilities, remote and self-diagnostic features. Incorporate quick and easy access to all assembly units requiring maintenance for inspection, removal and replacement. Minimize the numbers and types of tools and test equipment needed for maintenance. Incorporate self-healing and self-adjustment features where applicable and practical. | Improved maintainability. Improved reliability. Simplification of maintenance functions. Enhancing testability, diagnostics, and fault identification. Reduced maintenance time and logistic support resource requirements. | La Norma IEC 62508, Ed. 1.0-2010 Risk Management – Risk Assessment Techniques # Annex C- Best practices for human-centered design Table C.1 – Examples of methods and techniques that contribute to best practic | Life cycle stage | Best practices from ISO/PAS 18152
(ISO/PAS 18152 reference number given in
brackets) | Example methods and techniques | |----------------------------|---|--| | 1.1 Concept | Identify expected context of use of systems (forthcoming needs, trends and expectations) (1.1-1) Analyse the system concept to clarify objectives, their viability and risks (1.1-2) | Future workshop Preliminary field visit Focus groups Photographic surveys Simulations of future working environments In-depth analysis of work and lifestyles | | | Describe the objectives which the user or user organization wants to achieve through use of the system (1.1-3) | Participatory workshops Field observations and ethnography Consult stakeholders Human factors analysis | | | Define the scope of the context of use for the system (3.1-1) | - Context of use analysis | | 1.2 Planning
a) General | Develop a plan to achieve and maintain usability throughout the life of the system (2.4-1) Identify the specialist skills required and plan how to provide them (2.4-2) | – Plan to achieve and maintain usability
– Plan use of HSI data to mitigate risks | | b) User
involvement | Identify the HS issues and aspects of the system that require user input (2.6-1) Define a strategy and plan for user involvement (2.6-3) Select and use the most effective method to elicit user input (2.6-4) Customize tools and methods as necessary for particular projects/stages (2.7-4) | Identify HSI issues and aspects of the system requiring user input Develop a plan for user involvement Select and use the most effective methods Customize tools and methods as necessary |